21 research outputs found

    The Distance to NGC 5904 (M 5) via the Subdwarfs Main Sequence Fitting Method

    Full text link
    We present a determination of the distance modulus of the globular cluster NGC 5904 (M 5), obtained by means of the subdwarf main-sequence fitting on the (V,V-I) color-magnitude diagram. The subdwarf sample has been selected from the HIPPARCOS catalog in a metallicity range homogeneous with the cluster ([Fe/H] \~= -1.1). Both the cluster and the subdwarfs have been observed with the same telescope+instrument+filters setup (namely, ESO-NTT equipped with the SUSI2 camera), in order to preserve homogeneity and reduce systematic uncertainties. A set of archival HST data has then been used to obtain a deep and precise ridge line. These have been accurately calibrated in the ground photometric system by using the NTT data and used to fit the cluster distance modulus. By adopting the most commonly accepted values for the reddening, E(B-V) = 0.035 and 0.03, we obtain respectively mu_0 = 14.44 +- 0.09 +- 0.07 and mu_0 = 14.41 +- 0.09 +- 0.07, in agreement with recent determinations.Comment: 11 pages, 14 figures, accepted for publication in Astronomy and Astrophysic

    Old open clusters and the Galactic metallicity gradient: Berkeley 20, Berkeley 66, and Tombaugh 2

    Full text link
    To study the crucial range of Galactocentric distances between 12 and 16 kpc, where little information is available, we have obtained VI CCD imaging of Berkeley 20 and BVI CCD imaging of Berkeley 66 and Tombaugh 2, three distant, old open clusters. Using the synthetic colour magnitude diagram (CMD) technique with three types of evolutionary tracks of different metallicities, we have determined age, distance, reddening and indicative metallicity of these systems. The CMD of Be 20 is best reproduced by stellar models with a metallicity about half of solar (Z=0.008 or 0.01), in perfect agreement with high resolution spectroscopic estimates. Its age is between 5 and 6 Gyr from stellar models with overshooting and between 4.3 and 4.5 Gyr from models without it. The distance modulus from the best fitting models is always (m-M)0=14.7 (corresponding to a Galactocentric radius of about 16 kpc), and the reddening E(B-V) ranges between 0.13 and 0.16. A slightly lower metallicity (Z ~ 0.006) appears to be more appropriate for Be 66. This cluster is younger, (age of 3 Gyr), and closer, (m-M)0=13.3 (i.e., at 12 kpc from the Galactic centre), than Be 20, and suffers from high extinction, 1.2 < E(B-V) < 1.3, variable at the 2-3 per cent level. Finally, the results for To 2 indicate that it is an intermediate age cluster, with an age of about 1.4 Gyr or 1.6-1.8 Gyr for models without and with overshooting, respectively. The metallicity is about half of solar (Z=0.006 to 0.01), in agreement with spectroscopic determinations. The distance modulus is (m-M)0=14.5, implying a distance of about 14 kpc from the Galactic centre; the reddening E(B-V) is 0.31-0.4, depending on the model and metallicity, with a preferred value around 0.34.Comment: 19 pages, 19 figures, 8 tables Accepted 2010 November 5. Received 2010 Novembe

    Stellar Population Astrophysics (SPA) with the TNG. Stock 2, a little-studied open cluster with an eMSTO

    Get PDF
    Stock 2 is a little-studied open cluster that shows an extended main-sequence turnoff (eMSTO). In order to investigate this phenomenon and characterise the cluster itself, we performed high-resolution spectroscopy in the framework of the Stellar Population Astrophysics project. We employed the High Accuracy Radial velocity Planet Searcher in the Northern hemisphere spectrograph at the Telescopio Nazionale Galileo (TNG). We completed our observations with additional spectra taken with the Catania Astrophysical Observatory Spectropolarimeter. We observed 46 stars (dwarfs and giants). They represent by far the largest sample collected for this cluster to date. We provide the stellar parameters, the extinction, and the radial and projected rotational velocities for most of the stars. Chemical abundances for 21 species with atomic numbers up to 56 have also been derived. We note a differential reddening in the cluster field with an average value of 0.27 mag. This appears the main cause for the observed eMSTO because it cannot be explained as the result of different rotational velocities, as found in other clusters. We estimate an age for Stock 2 of 450 ± 150 Ma, which corresponds to a MSTO stellar mass of ≈2.8 M⊙. The cluster mean radial velocity is about 8.0 km s−1. We find a solar-like metallicity for the cluster, [Fe/H] = −0.07 ± 0.06, compatible with its galactocentric distance. The chemical abundances of main-sequence stars and giants are compatible within the errors. The exceptions are barium and strontium, which are clearly overabundant in giants, and cobalt, which is only marginally overabundant. Finally, the chemical composition of Stock 2 is fully compatible with the composition observed in other open clusters of the Galactic thin-disc population. Based on observations made with the Italian Telescopio Nazionale Galileo (TNG) operated on the island of La Palma by the Fundación Galileo Galilei of the INAF (Istituto Nazionale di Astrofisica) at the Observatorio del Roque de los Muchachos. This study is part of the Large Program titled SPA - Stellar Population Astrophysics: the detailed, age-resolved chemistry of the Milky Way disk (PI: L. Origlia), granted observing time with HARPS-N and GIANO-B echelle spectrographs at the TNG

    A DECam View of the Diffuse Dwarf Galaxy Crater II: Variable Stars

    Get PDF
    Time series observations of a single dithered field centered on the diffuse dwarf satellite galaxy Crater II were obtained with the Dark Energy Camera (DECam) at the 4m Blanco Telescope at Cerro Tololo Inter-American Observatory, Chile, uniformly covering up to two half-light radii. Analysis of the gg and ii time series results in the identification and characterization of 130 periodic variable stars, including 98 RR Lyrae stars, 7 anomalous Cepheids, and 1 SX Phoenicis star belonging to the Crater II population, and 24 foreground variables of different types. Using the large number of ab-type RR Lyrae stars present in the galaxy, we obtained a distance modulus to Crater II of (mM)0=20.333±0.004(m-M)_0=20.333\pm 0.004 (stat) ±0.07\pm 0.07 (sys). The distribution of the RR Lyrae stars suggests an elliptical shape for Crater II, with an ellipticity of 0.24 and a position angle of 153153^\circ. From the RR Lyrae stars we infer a small metallicity dispersion for the old population of Crater II of only 0.17 dex. There are hints that the most metal-poor stars in that narrow distribution have a wider distribution across the galaxy, while the slightly more metal rich part of the population is more centrally concentrated. Given the features in the color-magnitude diagram of Crater II, the anomalous Cepheids in this galaxy must have formed through a binary evolution channel of an old population.Comment: Accepted for publication in MNRA

    The GAPS Programme at TNG XXXIX. Multiple molecular species in the atmosphere of the warm Giant Planet WASP-80 b unveiled at high resolution with GIANO-B*

    Get PDF
    Detections of molecules in the atmosphere of gas giant exoplanets allow us to investigate the physico-chemical properties of the atmospheres. Their inferred chemical composition is used as tracer of planet formation and evolution mechanisms. Currently, an increasing number of detections is showing a possible rich chemistry of the hotter gaseous planets, but whether this extends to cooler giants is still unknown. We observed four transits of WASP-80 b, a warm transiting giant planet orbiting a late-K dwarf star with the near-infrared GIANO-B spectrograph installed at the Telescopio Nazionale Galileo and performed high-resolution transmission spectroscopy analysis. We report the detection of several molecular species in its atmosphere. Combining the four nights and comparing our transmission spectrum to planetary atmosphere models containing the signature of individual molecules within the cross-correlation framework, we find the presence of H2O, CH4, NH3, and HCN with high significance, tentative detection of CO2, and inconclusive results for C2H2 and CO. A qualitative interpretation of these results, using physically motivated models, suggests an atmosphere consistent with solar composition and the presence of disequilibrium chemistry and we therefore recommend the inclusion of the latter in future modeling of sub-1000 K planets

    The GAPS Programme with HARPS-N at TNG. XII. Characterization of the planetary system around HD 108874

    Get PDF
    In order to understand the observed physical and orbital diversity of extrasolar planetary systems, a full investigation of these objects and of their host stars is necessary. Within this field, one of the main purposes of the GAPS observing project with HARPS-N at TNG is to provide a more detailed characterization of already known systems. In this framework we monitored the star, hosting two giant planets, HD 108874, with HARPS-N for three years in order to refine the orbits, to improve the dynamical study and to search for additional low-mass planets in close orbits. We subtracted the radial velocity (RV) signal due to the known outer planets, finding a clear modulation of 40.2 d period. We analysed the correlation between RV residuals and the activity indicators and modelled the magnetic activity with a dedicated code. Our analysis suggests that the 40.2 d periodicity is a signature of the rotation period of the star. A refined orbital solution is provided, revealing that the system is close to a mean motion resonance of about 9:2, in a stable configuration over 1 Gyr. Stable orbits for low-mass planets are limited to regions very close to the star or far from it. Our data exclude super-Earths with Msini ≳ 5M⊕ within 0.4 AU and objects with Msini ≳ 2M⊕ with orbital periods of a few days. Finally we put constraints on the habitable zone of the system, assuming the presence of an exomoon orbiting the inner giant planet. Based on observations made with the Italian Telescopio Nazionale Galileo (TNG) operated on the island of La Palma by the Fundación Galileo Galilei of the INAF at the Spanish Observatorio del Roque de los Muchachos of the IAC in the frame of the programme Global Architecture of Planetary Systems (GAPS).Table A.1 is also available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/599/A90</A

    The GAPS programme with HARPS-N at TNG. XVI. Measurement of the Rossiter-McLaughlin effect of transiting planetary systems HAT-P-3, HAT-P-12, HAT-P-22, WASP-39, and WASP-60

    Get PDF
    Context. The measurement of the orbital obliquity of hot Jupiters with different physical characteristics can provide clues to the mechanisms of migration and orbital evolution of this particular class of giant exoplanets. Aims: We aim to derive the degree of alignment between planetary orbit and stellar spin angular momentum vectors and look for possible links with other orbital and fundamental physical parameters of the star-planet system. We focus on the characterisation of five transiting planetary systems (HAT-P-3, HAT-P-12, HAT-P-22, WASP-39, and WASP-60) and the determination of their sky-projected planet orbital obliquity through the measurement of the Rossiter-McLaughlin effect. Methods: We used HARPS-N high-precision radial velocity measurements, gathered during transit events, to measure the Rossiter-McLaughlin effect in the target systems and determine the sky-projected angle between the planetary orbital plane and stellar equator. The characterisation of stellar atmospheric parameters was performed by exploiting the HARPS-N spectra, using line equivalent width ratios and spectral synthesis methods. Photometric parameters of the five transiting exoplanets were re-analysed through 17 new light curves, obtained with an array of medium-class telescopes, and other light curves from the literature. Survey-time-series photometric data were analysed for determining the rotation periods of the five stars and their spin inclination. Results: From the analysis of the Rossiter-McLaughlin effect we derived a sky-projected obliquity of λ = 21.2° ± 8.7°, λ = -54°-13°+41°, λ = -2.1° ± 3.0°, λ = 0° ± 11°, and λ = -129° ± 17° for HAT-P-3 b, HAT-P-12 b, HAT-P-22 b, WASP-39 b, and WASP-60 b, respectively. The latter value indicates that WASP-60 b is moving on a retrograde orbit. These values represent the first measurements of λ for the five exoplanetary systems under study. The stellar activity of HAT-P-22 indicates a rotation period of 28.7 ± 0.4 days, which allowed us to estimate the true misalignment angle of HAT-P-22 b, ψ = 24° ± 18°. The revision of the physical parameters of the five exoplanetary systems returned values that are fully compatible with those existing in the literature. The exception to this is the WASP-60 system, for which, based on higher quality spectroscopic and photometric data, we found a more massive and younger star and a larger and hotter planet. Tables of the light curve and radial velocity data are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/613/A4
    corecore